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Introduction I Definition

• Optimization via Simulation (OvS), or, simply called
Simulation Optimization (SO):

min
x∈X

g(x) := E[G(x, ξ)],

where X ⊂ Rd is the feasible set, and g : X → R is a
deterministic function whose values can only be evaluated
with noisy observations.

• Given x, G(x, ξ) is a random variable (the randomness is
from ξ), and the distribution of G(x, ξ) is unknown.

• Given x, realizations of G(x, ξ) can be observed by running
simulation, or more generally, taking samples.
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Introduction I Types

• OvS Problem can be classified into two types according to
whether the explicit form of G(x, ξ) is available.

• White-box: The explicit form of G(x, ξ) is available.
• Example: G(x, ξ) = sin

(
(x− ξ)2

)
, where the distribution of ξ

is unknown.

• Black-box: The explicit form of G(x, ξ) is not available and
it is embedded in a simulation model.
• Example: Let G(x, ξ) be the waiting time of a customer in a

complex queueing network, where x represents the
configuration parameters.
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Introduction I Types

• OvS Problem can be classified into three types according to
the feasible set X .

• Ranking and selection (R&S): X is a set of relatively small
number of (discrete) solutions.

• Discrete OvS (DOvS): X is a discrete set, with huge or
even countably infinite number of solutions.
• One can also view R&S problem as a special type of DOvS

problem.

• Continuous OvS (COvS): X is a continuous set, hence
there exits uncountably infinite number of solutions.
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White-box OvS Problem

• For white-box OvS problems, we can use the sample average
approximation.

• Of course, those algorithms designed for black-box OvS
problems can also be applied to white-box OvS problems.
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White-box OvS Problem I Sample Average Approximation

• Suppose that we have an iid sample {ξ1, . . . , ξn} of ξ.

• To solve minx∈X g(x) := E[G(x, ξ)], we try to solve

min
x∈X

ĝn(x) :=
1

n

n∑
i=1

G(x, ξi),

with any suitable deterministic optimization algorithm (after
{ξ1, . . . , ξn} is realized).

• This method is called Sample Average Approximation (SAA);
see Kim et al. (2015) for a review.

• Clearly, for finite n, infx∈X ĝn(x) is a random variable (before
{ξ1, . . . , ξn} is realized), and it is not strictly equal to
minx∈X g(x).
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White-box OvS Problem I Sample Average Approximation

• Indeed, one can prove that

E
[

inf
x∈X

ĝn(x)

]
≤ min

x∈X
g(x).

Proof. For any y ∈ X ,

inf
x∈X

ĝn(x) ≤ ĝn(y) =⇒ E
[
inf
x∈X

ĝn(x)

]
≤ E[ĝn(y)] = g(y).

Minimizing the right-hand side over all y ∈ X completes the proof. �

• Moreover, it can also be shown that

E
[

inf
x∈X

ĝn(x)

]
≤ E

[
inf
x∈X

ĝn+1(x)

]
≤ min

x∈X
g(x).

(Prove it as an exercise)
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ĝn(x)

]
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ĝn(x)

]
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White-box OvS Problem I Sample Average Approximation

• What can we say if we continuously increase sample size n?

• It will be reassuring if we know that the obtained solution
will be closer and closer to the true solution, as we increase
sample size n.

• Formally, we are seeking for a convergence guarantee for
SAA method.
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White-box OvS Problem I Sample Average Approximation

• For set A ⊂ Rd, the distance from x ∈ Rd to A is defined as

dist(x,A) := inf
y∈A
‖x− y‖,

where ‖ · ‖ denotes the Euclidean distance.

• For sets A,B ⊂ Rd, the deviation from A to B is defined as

D(A,B) := sup
x∈A

dist(x,B).

• Let

S := argmin
x∈X

g(x),

Ŝn := argmin
x∈X

ĝn(x).
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White-box OvS Problem I Sample Average Approximation

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009) )

Suppose that

1 X is a compact set;

2 g(x) is finite valued and continuous on X ;

3 P{ĝn(x)→ g(x) uniformly in x ∈ X} = 1;

4 P{Ŝn is nonempty for n large enough} = 1;

Then, as n→∞,

min
x∈X

ĝn(x)
a.s.−→ min

x∈X
g(x), and D(Ŝn,S)

a.s.−→ 0.

Besides, if S = {x∗} is a singleton, then for any x̂n ∈ Ŝn,

x̂n
a.s.−→ x∗, as n→∞.
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White-box OvS Problem I Sample Average Approximation

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009) )

Suppose that

1 X is a compact set;

2 g(x) is finite valued and continuous on X ;

3 P{ĝn(x)→ g(x) uniformly in x ∈ X} = 1;

4 P{Ŝn is nonempty for n large enough} = 1;

Then, as n→∞,

min
x∈X

ĝn(x)
a.s.−→ min

x∈X
g(x), and D(Ŝn,S)

a.s.−→ 0.

Besides, if S = {x∗} is a singleton, then for any x̂n ∈ Ŝn,

x̂n
a.s.−→ x∗, as n→∞.
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White-box OvS Problem I Sample Average Approximation

• How fast does the SAA solution converge to the true
solution?

• Formally, it’s known as the rate of convergence.

• Under certain regularity conditions, one may show that∣∣∣∣min
x∈X

ĝn(x)−min
x∈X

g(x)

∣∣∣∣ = Op(n
−1/2),

and given S = {x∗} is a singleton,

‖x̂n − x∗‖ = Op(n
−1/2).
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Black-box COvS Problem

• Main types of algorithms for black-box COvS problems:
• random search; see Andradóttir (2015) for a review;
• stochastic approximation; see Chau and Fu (2015) for a review;
• surrogate-based methods; see Hong and Zhang (2021) for a

review.

• Stochastic Approximation (SA) was proposed by Robbins and

Monro (1951) and Kiefer and Wolfowitz (1952) .

• SA can be viewed as a stochastic version of the gradient
descent (or called steepest descent) algorithm, so it is also
called stochastic gradient descent.
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Black-box COvS Problem I Gradient Descent

• Gradient descent is a first-order iterative optimization
algorithm for finding a local minimum of a differentiable
(deterministic) function:

xk+1 = xk − γ∇g(xk),

where ∇g(x) is the gradient and γ > 0 is the step size.

• If the minimization problem is constrained, say the feasible set
X ⊂ Rd is convex and compact, one can easily add a
projection ΠX (x) mapping x /∈ X back into X .
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Black-box COvS Problem I Gradient Descent

• The value of the step size γ is allowed to change at every
iteration, and with proper choice, convergence to a local
minimizer (say, x∗) can be guaranteed, i.e., xk → x∗.

• Under certain regularity conditions, one can show that
|g(xk)− g(x∗)| = O(k−1) for unconstraied problem with
constant γ.
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Black-box COvS Problem I Stochastic Approximation

• SA as a stochastic version of the gradient ascent:

Xk+1 = ΠX

(
Xk − ak∇̂g(Xk)

)
,

where ΠX is the projection, {ak}k≥1 is a deterministic

positive sequence for step size, and ∇̂g(x) is an estimmator of
the gradient ∇g(x).

• In some simulation experiments, unbiased ∇̂g(x) is available,†

then it is the Robbins-Monro (RM) type SA (Robbins and

Monro 1951) .

• Otherwise, ∇̂g(x) needs to be constructed with certain
indirect method (thus biased), then it is the Kiefer-Wolfowitz
(KW) type SA Kiefer and Wolfowitz (1952) .

†
When we observe G(x, ξ), we will also observe ∇̂g(x, ξ) at the same time such that E[∇̂g(x, ξ)] = ∇g(x).
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Black-box COvS Problem I Stochastic Approximation

• Gradient descent vs SA (i.e., stochastic gradient desecent):
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Black-box COvS Problem I Stochastic Approximation

• Construct ∇̂g(Xk) via symmetric (or central) finite difference:

∇̂g (Xk) := (g1 (Xk) , . . . , gd (Xk))
ᵀ
,

where

gi (Xk) :=
G(Xk + ckei)−G(Xk − ckei)

2ck
,

ei denotes a d× 1 vector whose ith element is one and other
elements are all zeros, i = 1, . . . , d, and {ck}k≥1 is a
deterministic positive sequence.

• It requires 2d aditional simulation runs (samples) to compute
∇̂g(Xk).
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Black-box COvS Problem I Stochastic Approximation

• Let M denote the set of local optimal solutions:

M :=

{
x ∈ X : g(x) ≤ min

y∈B(x)
g(y)

}
,

where B(x) ⊂ X denotes a neighborhood of x ∈ X .

Local Convergence of SA (Theorem 3 of Blum (1954) )

Suppose that

1 g(x) satisfies certain regularity conditions;

2 Var(G(x, ξ)) ≤ σ2 <∞;

3 limk→∞ ck = 0,
∑∞
k=1 ak =∞,

∑∞
k=1 akck <∞, and∑∞

k=1 a
2
kc
−2
k <∞.

Then, for KW type SA with symmetric difference gradient
estimator, dist(Xk,M)

a.s.−→ 0 as k →∞.
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Black-box COvS Problem I Stochastic Approximation

• Uunder certain conditions, for x∗ ∈M such that Xk
a.s.−→ x∗,

RM type SA can reach Op(k
−1/2) rate of convergence, i.e.,

‖Xk − x∗‖ = Op(k
−1/2),

while KW type SA can reach Op(k
−1/3) rate of convergence.

• Note that the above order is in terms of the iteration number
k, rather than the number of simulation runs (sample size).

• If in terms of the sample size n, the rate of convergence of
KW type SA is Op((n/d)−1/3), which depends on the
dimensionality d.
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Black-box COvS Problem I Stochastic Approximation

• Simultaneous perturbation stochastic approximation (SPSA):

∇̂g (Xk) := (g1 (Xk) , . . . , gd (Xk))
ᵀ
,

where

gi (Xk) :=
G(Xk + ckBk)−G(Xk − ckBk)

2ckBk, i
,

Bk := (Bk, 1, . . . ,Bk, d)
ᵀ
, and Bk, i = 1 or − 1 with

probability 1/2.

• It requires only 2 aditional simulation runs (samples) to
compute ∇̂g(Xk), no matter what d is.

• SPSA can reach Op(n
−1/3) rate of convergence in terms of

the sample size n.
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Black-box DOvS Problem

• Many black-box DOvS algorithms are based on random
search; see Hong et al. (2015) for a review.

• The framework of random search:
• Initialization:

Arbitrarily choose x∗0 ∈ X ; set the information
set (that keeps visited solutions and their corresponding
observations) F0; set iteration index k = 0.

• At Iteration k:

– Sampling:

Choose the estimation set E ⊂ X (that contains
solutions at which simulation will be run); some or all of the
solutions in E are randomly sampled from X with distribution
determined by information Fk.

– Evaluation:

For each x ∈ E , spend simulation effort according
to certain rule determined by Fk and E .

– Updating:

Update Fk+1; choose some x∗k+1 as the current
best solution based on certain estimator; set k ← k + 1.
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Black-box DOvS Problem I Simulated Annealing

• The simulated annealing algorithm dates back to the
pioneering work by Metropolis et al. (1953) .
• It studied how in the physical annealing process, particles of a

solid arrange themselves into thermal equibibrium at a given
temperature.

• A large body of literature has developed the simulated
annealing algorithm to solve deterministic global optimization
problems over finite set; important works include Kirkpatrick

et al. (1983) , Mitra et al. (1986) , Hajek (1988) , etc.

• Later, the simulated annealing was extended to solve
black-box DOvS problems over finite set; important works
include Bulgak and Sander (1988) , Gelfand and Mitter (1989) ,
Alrefaei and Andradóttir (1999) , etc.
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Black-box DOvS Problem I Simulated Annealing

• Let B(x) ⊂ X denote a neighborhood† of x ∈ X .

• B(x) is carefully desined such that, for any x,y ∈ X , y is
reachable from x.
• That is, there exists a finite sequence x = x0,x1, . . . ,x` = y

such that xi+1 ∈ B(xi), i = 0, 1, . . . , `− 1.

• Define transition probability R(x,y), where
R : X × X → [0,∞) and R(x,y) > 0⇐⇒ y ∈ B(x).

• Let {tk}k≥1 be a positive sequence of numbers, which is
konwn as the temperature.

†
The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!
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Black-box DOvS Problem I Simulated Annealing

• Simulated annealing algorithm for deterministic optimization:
• Initialization:

Arbitrarily choose X0 ∈ X ; set iteration index
k = 0.

• At Iteration k:

– Sampling:

Sample a candidate solution Yk+1 ∈ B(Xk)
according to distribution R(Xk, ·), i.e.,

P(Yk+1 = y|Xk = x) = R(x,y).

– Evaluation: No need in the deterministic optimization.

– Updating:

Let

Xk+1 :=

{
Yk+1, with probability exp

{
−[g(Yk+1)−g(Xk)]

+

tk+1

}
,

Xk, otherwise;

set k ← k + 1.
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Black-box DOvS Problem I Simulated Annealing

• To ensuer the simulated annealing algorithm for deterministic
optimization is globally convergent, i.e.,

dist(Xk,S)
a.s.−→ 0, as k →∞ ,

Hajek (1988, Theorem 1) gives a sufficient condition.

1 R(x,y) satisfies weak reversibility; a sufficient example is that

R(x,y) :=

{ 1
|B(x)| , if y ∈ B(x),

0, otherwise,

with symmetric neighborhood, i.e., y ∈ B(x)⇐⇒ x ∈ B(y).

2 {tk}k≥1 takes the form

tk =
c

ln(k + 1)
,

where c is sufficiently large.†

†
c ≥ d∗, where d∗ is the maximum depth (Hajek 1988, p313) of the local but not global optimal solutions.
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Black-box DOvS Problem I Simulated Annealing

• Simulated annealing algorithm for black-box DOvS (Gelfand

and Mitter 1989) :
• Initialization: Arbitrarily choose X0 ∈ X ; set iteration index
k = 0.

• At Iteration k:

– Sampling: Sample a candidate solution Yk+1 ∈ B(Xk)
according to distribution R(Xk, ·), i.e.,

P(Yk+1 = y|Xk = x) = R(x,y).

– Evaluation: Let ĝ(Yk+1) :=
1

nk+1

∑nk+1

i=1 G(Yk+1, ξi),

ĝ(Xk) :=
1

nk+1

∑nk+1

i=1 G(Xk, ξ′i).

– Updating: Let

Xk+1 :=

{
Yk+1, with probability exp

{
−[ĝ(Yk+1)−ĝ(Xk)]

+

tk+1

}
,

Xk, otherwise;

set k ← k + 1.
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Black-box DOvS Problem I Simulated Annealing

• Gelfand and Mitter (1989) show that if

ĝ(Yk+1)
∣∣Yk+1 = y ∼ N (g(y),σ2k+1),

such that σk = o(tk), then the simulated annealing algorithm
used for DOvS has the same global convergence as its
counterpart used for deterministic optimization.

• A sufficient condition is that:
• G(x, ξ) ∼ N (g(x),σ2(x)) with σ2(x) ≤ σ2 <∞ for all
x ∈ X .

• {nk}k≥1 satisfies limk→∞
1

tk
√
nk

= 0, i.e., nk := t−αk with

α > 2.

• Alrefaei and Andradóttir (1999) propose a modified simulated
annealing algorithm for DOvS, which is also globally
convergent:
• temperature tk is constant;
• the current best solution is chosed in a different way.
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counterpart used for deterministic optimization.

• A sufficient condition is that:
• G(x, ξ) ∼ N (g(x),σ2(x)) with σ2(x) ≤ σ2 <∞ for all
x ∈ X .

• {nk}k≥1 satisfies limk→∞
1

tk
√
nk

= 0, i.e., nk := t−αk with

α > 2.

• Alrefaei and Andradóttir (1999) propose a modified simulated
annealing algorithm for DOvS, which is also globally
convergent:
• temperature tk is constant;
• the current best solution is chosed in a different way.
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Black-box DOvS Problem I COMPASS

• Convergent Optimization via Most-Promising-Area Stochastic
Search (COMPASS) is a locally convergent algorithm for
black-box algorithm proposed by Hong and Nelson (2006) .

• It can be used when the discrete feasible set is finite (i.e., fully
constrained) or infinite (i.e., partially constrained or
unconstrained).
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Black-box DOvS Problem I COMPASS

• COMPASS for DOvS Hong and Nelson (2006) :
• Initialization:

Arbitrarily choose x0 ∈ X ; set x∗0 = x0 and
V0 = {x0}; take observations according to a simulation
allocation rule (SAR) from x0; let P0 = X ; set iteration index
k = 0.

• At Iteration k:

– Sampling:

Sample m solutions uniformly and independently
from Pk, denoted as {xk1, . . . ,xkm}; let
Vk+1 := Vk ∪ {xk1, . . . ,xkm} be the estimation set.

– Evaluation:

For each x ∈ Vk+1, take additional observations
according to the SAR.

– Updating:

Update Pk+1; choose the solution in Vk+1 with
smallest estimated funtion value as x∗k+1; set k ← k + 1.
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Black-box DOvS Problem I COMPASS

• The way to construct Pk – the most promising area:
COMPASS ALGORITHM

16

SHEN Haihui MEM6810 Modeling and Simulation, Lec 10 Spring 2023 (full-time) 34 / 36

Image from Jeff Hong

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/
https://www.fdsm.fudan.edu.cn/En/preview.html?UID=012113


1 Introduction
I Definition
I Types

2 White-box OvS Problem
I Sample Average Approximation

3 Black-box COvS Problem
I Gradient Descent
I Stochastic Approximation

4 Black-box DOvS Problem
I Simulated Annealing
I COMPASS

5 Usage in Softwares

SHEN Haihui MEM6810 Modeling and Simulation, Lec 10 Spring 2023 (full-time) 35 / 36

https://shenhaihui.github.io/teaching/mem6810f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Usage in Softwares

• In many commercial simulation softwares, like Arena,
AnyLogic, Simio and FlexSim, OptQuest is integrated for
simulation optimization.

• OptQuest is based on a combination of methods, including
linear/integer programming, heuristics and metaheuristics.
• It is robust when used to solve practical OvS problems;
• but it has no provable convergence for OvS problems.

• None of those OvS algirhtms have been integrated into the
commercial simulation softwares yet.

• So, for reaseachers in the field of OvS, there is still a long way
to go...
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