MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory /

Analysis

Lecture 10: Output Analysis III: Optimization

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

★ shenhaihui.github.io/teaching/mem6810f

shenhaihui@sjtu.edu.cn

Spring 2023 (full-time)

董浩云智能制造与服务管理研究的 CYTUNG institute of intelligent Manufacturing and Service Manageme (中美物流研究院) (Singuil Solidal Intelligics but thinte)

Contents

- 1 Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem
 - ► Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ► COMPASS
- Usage in Softwares

- 1 Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem
 - ► Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ► COMPASS
- Usage in Softwares

 Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$\min_{\boldsymbol{x} \in \mathcal{X}} \ g(\boldsymbol{x}) \coloneqq \mathbb{E}[G(\boldsymbol{x}, \boldsymbol{\xi})],$$

where $\mathcal{X} \subset \mathbb{R}^d$ is the feasible set, and $g: \mathcal{X} \to \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

 Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$\min_{\boldsymbol{x} \in \mathcal{X}} \ g(\boldsymbol{x}) \coloneqq \mathbb{E}[G(\boldsymbol{x}, \boldsymbol{\xi})],$$

where $\mathcal{X} \subset \mathbb{R}^d$ is the feasible set, and $g: \mathcal{X} \to \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

• Given x, $G(x, \xi)$ is a random variable (the randomness is from ξ), and the distribution of $G(x, \xi)$ is unknown.

 Optimization via Simulation (OvS), or, simply called Simulation Optimization (SO):

$$\min_{\boldsymbol{x} \in \mathcal{X}} \ g(\boldsymbol{x}) \coloneqq \mathbb{E}[G(\boldsymbol{x}, \xi)],$$

where $\mathcal{X} \subset \mathbb{R}^d$ is the feasible set, and $g: \mathcal{X} \to \mathbb{R}$ is a deterministic function whose values can only be evaluated with noisy observations.

- Given x, $G(x, \xi)$ is a random variable (the randomness is from ξ), and the distribution of $G(x, \xi)$ is unknown.
- Given x, realizations of $G(x, \xi)$ can be observed by running simulation, or more generally, taking samples.

Introduction

• OvS Problem can be classified into two types according to whether the explicit form of $G(x,\xi)$ is available.

- OvS Problem can be classified into two types according to whether the explicit form of $G(x, \xi)$ is available.
- White-box: The explicit form of $G(x, \xi)$ is available.
 - Example: $G(x,\xi) = \sin((x-\xi)^2)$, where the distribution of ξ is unknown.

- OvS Problem can be classified into two types according to whether the explicit form of $G(x, \xi)$ is available.
- White-box: The explicit form of $G(x, \xi)$ is available.
 - Example: $G(x,\xi) = \sin((x-\xi)^2)$, where the distribution of ξ is unknown.
- Black-box: The explicit form of $G(x, \xi)$ is not available and it is embedded in a simulation model.
 - Example: Let $G(x, \xi)$ be the waiting time of a customer in a complex queueing network, where x represents the configuration parameters.

Introduction

• OvS Problem can be classified into three types according to the feasible set \mathcal{X} .

Introduction

- OvS Problem can be classified into three types according to the feasible set \mathcal{X} .
- Ranking and selection (R&S): X is a set of relatively small number of (discrete) solutions.

- OvS Problem can be classified into three types according to the feasible set \mathcal{X} .
- Ranking and selection (R&S): X is a set of relatively small number of (discrete) solutions.
- Discrete OvS (DOvS): X is a discrete set, with huge or even countably infinite number of solutions.
 - One can also view R&S problem as a special type of DOvS problem.

- OvS Problem can be classified into three types according to the feasible set \mathcal{X} .
- Ranking and selection (R&S): X is a set of relatively small number of (discrete) solutions.
- Discrete OvS (DOvS): X is a discrete set, with huge or even countably infinite number of solutions.
 - One can also view R&S problem as a special type of DOvS problem.
- Continuous OvS (COvS): \mathcal{X} is a continuous set, hence there exits uncountably infinite number of solutions.

- 1 Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem▶ Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ▶ COMPASS
- 5 Usage in Softwares

White-box OvS Problem

• For white-box OvS problems, we can use the sample average approximation.

White-box OvS Problem

- For white-box OvS problems, we can use the sample average approximation.
- Of course, those algorithms designed for black-box OvS problems can also be applied to white-box OvS problems.

- Suppose that we have an iid sample $\{\xi_1, \ldots, \xi_n\}$ of ξ .
- ullet To solve $\min_{oldsymbol{x}\in\mathcal{X}}g(oldsymbol{x})\coloneqq\mathbb{E}[G(oldsymbol{x},\xi)]$, we try to solve

$$\min_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \coloneqq \frac{1}{n} \sum_{i=1}^n G(\boldsymbol{x}, \xi_i),$$

with any suitable deterministic optimization algorithm (after $\{\xi_1, \ldots, \xi_n\}$ is realized).

- Suppose that we have an iid sample $\{\xi_1, \ldots, \xi_n\}$ of ξ .
- To solve $\min_{x \in \mathcal{X}} g(x) \coloneqq \mathbb{E}[G(x, \xi)]$, we try to solve

$$\min_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \coloneqq \frac{1}{n} \sum_{i=1}^n G(\boldsymbol{x}, \xi_i),$$

with any suitable deterministic optimization algorithm (after $\{\xi_1, \ldots, \xi_n\}$ is realized).

This method is called Sample Average Approximation (SAA);
 see Kim et al. (2015) for a review.

- Suppose that we have an iid sample $\{\xi_1, \ldots, \xi_n\}$ of ξ .
- To solve $\min_{x \in \mathcal{X}} g(x) \coloneqq \mathbb{E}[G(x, \xi)]$, we try to solve

$$\min_{\boldsymbol{x} \in \mathcal{X}} \ \widehat{g}_n(\boldsymbol{x}) \coloneqq \frac{1}{n} \sum_{i=1}^n G(\boldsymbol{x}, \xi_i),$$

with any suitable deterministic optimization algorithm (after $\{\xi_1, \ldots, \xi_n\}$ is realized).

- This method is called Sample Average Approximation (SAA);
 see Kim et al. (2015) for a review.
- Clearly, for finite n, $\inf_{x \in \mathcal{X}} \widehat{g}_n(x)$ is a random variable (before $\{\xi_1, \ldots, \xi_n\}$ is realized), and it is not strictly equal to $\min_{x \in \mathcal{X}} g(x)$.

Indeed, one can prove that

$$\mathbb{E}\left[\inf_{oldsymbol{x}\in\mathcal{X}}\widehat{g}_n(oldsymbol{x})
ight] \leq \min_{oldsymbol{x}\in\mathcal{X}}g(oldsymbol{x}).$$

Indeed, one can prove that

$$\mathbb{E}\left[\inf_{oldsymbol{x}\in\mathcal{X}}\widehat{g}_n(oldsymbol{x})
ight] \leq \min_{oldsymbol{x}\in\mathcal{X}}g(oldsymbol{x}).$$

Proof.

• Indeed, one can prove that

$$\mathbb{E}\left[\inf_{m{x}\in\mathcal{X}}\widehat{g}_n(m{x})
ight] \leq \min_{m{x}\in\mathcal{X}}g(m{x}).$$

Proof. For any $y \in \mathcal{X}$,

$$\inf_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \leq \widehat{g}_n(\boldsymbol{y}) \Longrightarrow \mathbb{E} \left[\inf_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \right] \leq \mathbb{E} [\widehat{g}_n(\boldsymbol{y})] = g(\boldsymbol{y}).$$

• Indeed, one can prove that

$$\mathbb{E}\left[\inf_{m{x}\in\mathcal{X}}\widehat{g}_n(m{x})
ight] \leq \min_{m{x}\in\mathcal{X}}g(m{x}).$$

<u>Proof.</u> For any $y \in \mathcal{X}$,

$$\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x}) \leq \widehat{g}_n(\boldsymbol{y}) \Longrightarrow \mathbb{E}\left[\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})\right] \leq \mathbb{E}[\widehat{g}_n(\boldsymbol{y})] = g(\boldsymbol{y}).$$

Minimizing the right-hand side over all $y \in \mathcal{X}$ completes the proof.

• Indeed, one can prove that

$$\mathbb{E}\left[\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})\right] \leq \min_{\boldsymbol{x}\in\mathcal{X}}g(\boldsymbol{x}).$$

<u>Proof.</u> For any $y \in \mathcal{X}$,

$$\inf_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \leq \widehat{g}_n(\boldsymbol{y}) \Longrightarrow \mathbb{E} \left[\inf_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \right] \leq \mathbb{E} [\widehat{g}_n(\boldsymbol{y})] = g(\boldsymbol{y}).$$

Minimizing the right-hand side over all $y \in \mathcal{X}$ completes the proof.

Moreover, it can also be shown that

$$\mathbb{E}\left[\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_n(\boldsymbol{x})\right] \leq \mathbb{E}\left[\inf_{\boldsymbol{x}\in\mathcal{X}}\widehat{g}_{n+1}(\boldsymbol{x})\right] \leq \min_{\boldsymbol{x}\in\mathcal{X}}g(\boldsymbol{x}).$$

(Prove it as an exercise)

White-box OvS Problem

► Sample Average Approximation

• What can we say if we continuously increase sample size n?

- What can we say if we continuously increase sample size n?
- It will be **reassuring** if we know that the obtained solution will be closer and closer to the true solution, as we increase sample size n.

- What can we say if we continuously increase sample size n?
- It will be reassuring if we know that the obtained solution will be closer and closer to the true solution, as we increase sample size n.
- Formally, we are seeking for a convergence guarantee for SAA method.

ullet For set $\mathcal{A}\subset\mathbb{R}^d$, the distance from $x\in\mathbb{R}^d$ to \mathcal{A} is defined as

$$\operatorname{dist}(oldsymbol{x}, \mathcal{A}) \coloneqq \inf_{oldsymbol{y} \in \mathcal{A}} \|oldsymbol{x} - oldsymbol{y}\|,$$

where $\|\cdot\|$ denotes the Euclidean distance.

ullet For set $\mathcal{A}\subset\mathbb{R}^d$, the distance from $oldsymbol{x}\in\mathbb{R}^d$ to \mathcal{A} is defined as

$$\operatorname{dist}(\boldsymbol{x},\mathcal{A})\coloneqq\inf_{\boldsymbol{y}\in\mathcal{A}}\|\boldsymbol{x}-\boldsymbol{y}\|,$$

where $\|\cdot\|$ denotes the Euclidean distance.

• For sets $\mathcal{A},\mathcal{B}\subset\mathbb{R}^d$, the deviation from \mathcal{A} to \mathcal{B} is defined as

$$D(\mathcal{A}, \mathcal{B}) := \sup_{\boldsymbol{x} \in \mathcal{A}} \operatorname{dist}(\boldsymbol{x}, \mathcal{B}).$$

ullet For set $\mathcal{A}\subset\mathbb{R}^d$, the distance from $oldsymbol{x}\in\mathbb{R}^d$ to \mathcal{A} is defined as

$$\operatorname{dist}(\boldsymbol{x}, \mathcal{A}) \coloneqq \inf_{\boldsymbol{y} \in \mathcal{A}} \|\boldsymbol{x} - \boldsymbol{y}\|,$$

where $\|\cdot\|$ denotes the Euclidean distance.

ullet For sets $\mathcal{A},\mathcal{B}\subset\mathbb{R}^d$, the deviation from \mathcal{A} to \mathcal{B} is defined as

$$D(\mathcal{A}, \mathcal{B}) := \sup_{\boldsymbol{x} \in \mathcal{A}} \operatorname{dist}(\boldsymbol{x}, \mathcal{B}).$$

Let

$$S := \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} g(\boldsymbol{x}),$$
$$\widehat{S}_n := \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} \ \widehat{g}_n(\boldsymbol{x}).$$

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009))

Suppose that

- $\mathbf{0}$ \mathcal{X} is a compact set;
- **2** g(x) is finite valued and continuous on \mathcal{X} ;
- 3 $\mathbb{P}\{\widehat{g}_n(\boldsymbol{x}) \to g(\boldsymbol{x}) \text{ uniformly in } \boldsymbol{x} \in \mathcal{X}\} = 1;$
- **4** $\mathbb{P}\{\widehat{\mathcal{S}}_n \text{ is nonempty for } n \text{ large enough}\} = 1;$

Then, as $n \to \infty$,

$$\min_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \xrightarrow{a.s.} \min_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}), \text{ and } D(\widehat{\mathcal{S}}_n, \mathcal{S}) \xrightarrow{a.s.} 0.$$

Convergence of SAA (Theorem 5.3 of Shapiro et al. (2009))

Suppose that

- $\mathbf{0}$ \mathcal{X} is a compact set;
- **2** g(x) is finite valued and continuous on \mathcal{X} ;
- 3 $\mathbb{P}\{\widehat{g}_n(\boldsymbol{x}) \to g(\boldsymbol{x}) \text{ uniformly in } \boldsymbol{x} \in \mathcal{X}\} = 1;$
- **4** $\mathbb{P}\{\widehat{\mathcal{S}}_n \text{ is nonempty for } n \text{ large enough}\} = 1;$

Then, as $n \to \infty$,

$$\min_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) \xrightarrow{a.s.} \min_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}), \text{ and } D(\widehat{\mathcal{S}}_n, \mathcal{S}) \xrightarrow{a.s.} 0.$$

Besides, if $\mathcal{S}=\{m{x}^*\}$ is a singleton, then for any $\widehat{m{x}}_n\in\widehat{\mathcal{S}}_n$,

$$\widehat{m{x}}_n \stackrel{a.s.}{\longrightarrow} m{x}^*$$
, as $n \to \infty$.

► Sample Average Approximation

 How fast does the SAA solution converge to the true solution?

- How fast does the SAA solution converge to the true solution?
- Formally, it's known as the rate of convergence.

- How fast does the SAA solution converge to the true solution?
- Formally, it's known as the rate of convergence.
- Under certain regularity conditions, one may show that

$$\left| \min_{\boldsymbol{x} \in \mathcal{X}} \widehat{g}_n(\boldsymbol{x}) - \min_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}) \right| = O_p(n^{-1/2}),$$

and given $\mathcal{S} = \{x^*\}$ is a singleton,

$$\|\widehat{\boldsymbol{x}}_n - \boldsymbol{x}^*\| = O_p(n^{-1/2}).$$

- 1 Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem
 - ► Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ► COMPASS
- 5 Usage in Softwares

- Main types of algorithms for black-box COvS problems:
 - random search; see Andradóttir (2015) for a review;
 - stochastic approximation; see Chau and Fu (2015) for a review;
 - surrogate-based methods; see Hong and Zhang (2021) for a review.

- Main types of algorithms for black-box COvS problems:
 - random search; see Andradóttir (2015) for a review;
 - stochastic approximation; see Chau and Fu (2015) for a review;
 - surrogate-based methods; see Hong and Zhang (2021) for a review.
- Stochastic Approximation (SA) was proposed by Robbins and Monro (1951) and Kiefer and Wolfowitz (1952).
- SA can be viewed as a stochastic version of the gradient descent (or called steepest descent) algorithm, so it is also called stochastic gradient descent.

 Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable (deterministic) function:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - \gamma
abla g(oldsymbol{x}_k)$$
 ,

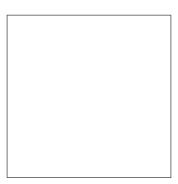
where $\nabla g(\boldsymbol{x})$ is the gradient and $\gamma > 0$ is the step size.

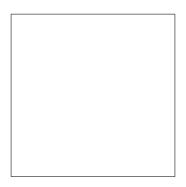
 Gradient descent is a first-order iterative optimization algorithm for finding a local minimum of a differentiable (deterministic) function:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - \gamma
abla g(oldsymbol{x}_k)$$
 ,

where $\nabla g(\boldsymbol{x})$ is the gradient and $\gamma>0$ is the step size.

• If the minimization problem is constrained, say the feasible set $\mathcal{X} \subset \mathbb{R}^d$ is convex and compact, one can easily add a projection $\Pi_{\mathcal{X}}(\boldsymbol{x})$ mapping $\boldsymbol{x} \notin \mathcal{X}$ back into \mathcal{X} .





• The value of the step size γ is allowed to change at every iteration, and with proper choice, convergence to a local minimizer (say, x^*) can be guaranteed, i.e., $x_k \to x^*$.

- The value of the step size γ is allowed to change at every iteration, and with proper choice, convergence to a local minimizer (say, x^*) can be guaranteed, i.e., $x_k \to x^*$.
- Under certain regularity conditions, one can show that $|g(\boldsymbol{x}_k) g(\boldsymbol{x}^*)| = O(k^{-1})$ for unconstraied problem with constant γ .

• SA as a stochastic version of the gradient ascent:

$$oldsymbol{X}_{k+1} = \Pi_{\mathcal{X}} \left(oldsymbol{X}_k - a_k \widehat{
abla} g(oldsymbol{X}_k)
ight)$$
 ,

where $\Pi_{\mathcal{X}}$ is the projection, $\{a_k\}_{k\geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla}g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

• SA as a stochastic version of the gradient ascent:

$$oldsymbol{X}_{k+1} = \Pi_{\mathcal{X}} \left(oldsymbol{X}_k - a_k \widehat{
abla} g(oldsymbol{X}_k)
ight)$$
 ,

where $\Pi_{\mathcal{X}}$ is the projection, $\{a_k\}_{k\geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla}g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

• In some simulation experiments, unbiased $\widehat{\nabla}g(x)$ is available, then it is the Robbins-Monro (RM) type SA (Robbins and Monro 1951).

• SA as a stochastic version of the gradient ascent:

$$oldsymbol{X}_{k+1} = \Pi_{\mathcal{X}} \left(oldsymbol{X}_k - a_k \widehat{
abla} g(oldsymbol{X}_k)
ight)$$
 ,

where $\Pi_{\mathcal{X}}$ is the projection, $\{a_k\}_{k\geq 1}$ is a deterministic positive sequence for step size, and $\widehat{\nabla}g(\boldsymbol{x})$ is an estimmator of the gradient $\nabla g(\boldsymbol{x})$.

- In some simulation experiments, unbiased $\widehat{\nabla}g(x)$ is available, then it is the Robbins-Monro (RM) type SA (Robbins and Monro 1951).
- Otherwise, $\widehat{\nabla}g(x)$ needs to be constructed with certain indirect method (thus biased), then it is the Kiefer-Wolfowitz (KW) type SA [Kiefer and Wolfowitz (1952)].

The we observe $G(x,\xi)$, we will also observe $\widehat{\nabla}g(x,\xi)$ at the same time such that $\mathbb{E}[\widehat{\nabla}g(x,\xi)]=\nabla g(x)$.

• Gradient descent vs SA (i.e., stochastic gradient desecent):



• Construct $\widehat{\nabla} g(\boldsymbol{X}_k)$ via symmetric (or central) finite difference:

$$\widehat{\nabla} g\left(oldsymbol{X}_k
ight)\coloneqq\left(g_1\left(oldsymbol{X}_k
ight),\ldots,g_d\left(oldsymbol{X}_k
ight)
ight)^\intercal$$
,

where

$$g_i\left(\boldsymbol{X}_k\right)\coloneqq \frac{G(\boldsymbol{X}_k+c_k\boldsymbol{e}_i)-G(\boldsymbol{X}_k-c_k\boldsymbol{e}_i)}{2c_k}$$
,

 e_i denotes a $d \times 1$ vector whose ith element is one and other elements are all zeros, $i=1,\ldots,d$, and $\{c_k\}_{k\geq 1}$ is a deterministic positive sequence.

• Construct $\widehat{\nabla} g(\boldsymbol{X}_k)$ via symmetric (or central) finite difference:

$$\widehat{
abla}g\left(oldsymbol{X}_{k}
ight)\coloneqq\left(g_{1}\left(oldsymbol{X}_{k}
ight),\ldots,g_{d}\left(oldsymbol{X}_{k}
ight)
ight)^{\intercal}$$
,

where

$$g_i\left(\boldsymbol{X}_k\right) \coloneqq \frac{G(\boldsymbol{X}_k + c_k \boldsymbol{e}_i) - G(\boldsymbol{X}_k - c_k \boldsymbol{e}_i)}{2c_k},$$

 e_i denotes a $d \times 1$ vector whose ith element is one and other elements are all zeros, $i=1,\ldots,d$, and $\{c_k\}_{k\geq 1}$ is a deterministic positive sequence.

• It requires 2d aditional simulation runs (samples) to compute $\widehat{\nabla} g(\boldsymbol{X}_k)$.

• Let \mathcal{M} denote the set of local optimal solutions:

$$\mathcal{M}\coloneqq\left\{oldsymbol{x}\in\mathcal{X}:\ g(oldsymbol{x})\leq\min_{oldsymbol{y}\in\mathcal{B}(oldsymbol{x})}g(oldsymbol{y})
ight\}$$
 ,

where $\mathcal{B}(x) \subset \mathcal{X}$ denotes a neighborhood of $x \in \mathcal{X}$.

• Let \mathcal{M} denote the set of local optimal solutions:

$$\mathcal{M}\coloneqq\left\{oldsymbol{x}\in\mathcal{X}:\ g(oldsymbol{x})\leq\min_{oldsymbol{y}\in\mathcal{B}(oldsymbol{x})}g(oldsymbol{y})
ight\}$$
 ,

where $\mathcal{B}(x) \subset \mathcal{X}$ denotes a neighborhood of $x \in \mathcal{X}$.

Local Convergence of SA (Theorem 3 of Blum (1954))

Suppose that

- $oldsymbol{0}$ $g(oldsymbol{x})$ satisfies certain regularity conditions;
- **2** $\operatorname{Var}(G(\boldsymbol{x},\xi)) \leq \sigma^2 < \infty;$
- 3 $\lim_{k\to\infty}c_k=0$, $\sum_{k=1}^\infty a_k=\infty$, $\sum_{k=1}^\infty a_kc_k<\infty$, and $\sum_{k=1}^\infty a_k^2c_k^{-2}<\infty$.

Then, for KW type SA with symmetric difference gradient estimator, $\operatorname{dist}(\boldsymbol{X}_k,\mathcal{M}) \xrightarrow{a.s.} 0$ as $k \to \infty$.

• Uunder certain conditions, for $x^* \in \mathcal{M}$ such that $X_k \xrightarrow{a.s.} x^*$, RM type SA can reach $O_p(k^{-1/2})$ rate of convergence, i.e.,

$$\|\boldsymbol{X}_k - \boldsymbol{x}^*\| = O_p(k^{-1/2}),$$

while KW type SA can reach $O_p(k^{-1/3})$ rate of convergence.

• Uunder certain conditions, for $x^* \in \mathcal{M}$ such that $X_k \xrightarrow{a.s.} x^*$, RM type SA can reach $O_p(k^{-1/2})$ rate of convergence, i.e.,

$$\|\boldsymbol{X}_k - \boldsymbol{x}^*\| = O_p(k^{-1/2}),$$

while KW type SA can reach $O_p(k^{-1/3})$ rate of convergence.

 Note that the above order is in terms of the iteration number k, rather than the number of simulation runs (sample size).

• Uunder certain conditions, for $x^* \in \mathcal{M}$ such that $X_k \xrightarrow{a.s.} x^*$, RM type SA can reach $O_p(k^{-1/2})$ rate of convergence, i.e.,

$$\|\boldsymbol{X}_k - \boldsymbol{x}^*\| = O_p(k^{-1/2}),$$

while KW type SA can reach $O_p(k^{-1/3})$ rate of convergence.

- Note that the above order is in terms of the iteration number k, rather than the number of simulation runs (sample size).
- If in terms of the sample size n, the rate of convergence of KW type SA is $O_p((n/d)^{-1/3})$, which depends on the dimensionality d.

• Simultaneous perturbation stochastic approximation (SPSA):

$$\widehat{
abla}g\left(oldsymbol{X}_{k}
ight)\coloneqq\left(g_{1}\left(oldsymbol{X}_{k}
ight)$$
 , \ldots , $g_{d}\left(oldsymbol{X}_{k}
ight)
ight)^{\intercal}$,

where

$$g_i(\mathbf{X}_k) := \frac{G(\mathbf{X}_k + c_k \mathbf{B}_k) - G(\mathbf{X}_k - c_k \mathbf{B}_k)}{2c_k B_{k,i}},$$

 $\boldsymbol{B}_k \coloneqq (B_{k,1}, \dots, B_{k,d})^\mathsf{T}$, and $B_{k,i} = 1$ or -1 with probability 1/2.

• Simultaneous perturbation stochastic approximation (SPSA):

$$\widehat{
abla}g\left(oldsymbol{X}_{k}
ight)\coloneqq\left(g_{1}\left(oldsymbol{X}_{k}
ight),\ldots,g_{d}\left(oldsymbol{X}_{k}
ight)
ight)^{\intercal}$$
,

where

$$g_i(\boldsymbol{X}_k) \coloneqq \frac{G(\boldsymbol{X}_k + c_k \boldsymbol{B}_k) - G(\boldsymbol{X}_k - c_k \boldsymbol{B}_k)}{2c_k B_{k,i}},$$

 $\mathbf{B}_k := (B_{k,1}, \dots, B_{k,d})^\mathsf{T}$, and $B_{k,i} = 1$ or -1 with probability 1/2.

• It requires only 2 **aditional** simulation runs (samples) to compute $\widehat{\nabla} g(\mathbf{X}_k)$, no matter what d is.

• Simultaneous perturbation stochastic approximation (SPSA):

$$\widehat{
abla}g\left(oldsymbol{X}_{k}
ight)\coloneqq\left(g_{1}\left(oldsymbol{X}_{k}
ight),\ldots,g_{d}\left(oldsymbol{X}_{k}
ight)
ight)^{\intercal}$$
,

where

$$g_i(\boldsymbol{X}_k) \coloneqq \frac{G(\boldsymbol{X}_k + c_k \boldsymbol{B}_k) - G(\boldsymbol{X}_k - c_k \boldsymbol{B}_k)}{2c_k B_{k,i}},$$

 $\mathbf{B}_k := (B_{k,1}, \dots, B_{k,d})^\mathsf{T}$, and $B_{k,i} = 1$ or -1 with probability 1/2.

- It requires only 2 **aditional** simulation runs (samples) to compute $\widehat{\nabla} g(X_k)$, no matter what d is.
- SPSA can reach $O_p(n^{-1/3})$ rate of convergence in terms of the sample size n.

- 1 Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem
 - ► Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ▶ COMPASS
- 5 Usage in Softwares

 Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
 - Initialization:

- At Iteration *k*:
 - Sampling:

- Evaluation:
- Updating:

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
 - Initialization: Arbitrarily choose x₀^{*} ∈ X; set the information set (that keeps visited solutions and their corresponding observations) F₀; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling:

- Evaluation:
- Updating:

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
 - Initialization: Arbitrarily choose x₀^{*} ∈ X; set the information set (that keeps visited solutions and their corresponding observations) F₀; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_k .
 - Evaluation:
 - Updating:

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
 - Initialization: Arbitrarily choose x₀^{*} ∈ X; set the information set (that keeps visited solutions and their corresponding observations) F₀; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_k .
 - Evaluation: For each $x \in \mathcal{E}$, spend simulation effort according to certain rule determined by \mathcal{F}_k and \mathcal{E} .
 - Updating:

- Many black-box DOvS algorithms are based on random search; see Hong et al. (2015) for a review.
- The framework of random search:
 - Initialization: Arbitrarily choose x₀^{*} ∈ X; set the information set (that keeps visited solutions and their corresponding observations) F₀; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Choose the estimation set $\mathcal{E} \subset \mathcal{X}$ (that contains solutions at which simulation will be run); some or all of the solutions in \mathcal{E} are randomly sampled from \mathcal{X} with distribution determined by information \mathcal{F}_k .
 - Evaluation: For each $x \in \mathcal{E}$, spend simulation effort according to certain rule determined by \mathcal{F}_k and \mathcal{E} .
 - Updating: Update \mathcal{F}_{k+1} ; choose some x_{k+1}^* as the current best solution based on certain estimator; set $k \leftarrow k+1$.

- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
 - It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.

- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
 - It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- A large body of literature has developed the simulated annealing algorithm to solve deterministic global optimization problems over finite set; important works include Kirkpatrick et al. (1983), Mitra et al. (1986), Hajek (1988), etc.

- The simulated annealing algorithm dates back to the pioneering work by Metropolis et al. (1953).
 - It studied how in the physical annealing process, particles of a solid arrange themselves into thermal equibibrium at a given temperature.
- A large body of literature has developed the simulated annealing algorithm to solve deterministic global optimization problems over finite set; important works include Kirkpatrick et al. (1983), Mitra et al. (1986), Hajek (1988), etc.
- Later, the simulated annealing was extended to solve black-box DOvS problems over **finite** set; important works include Bulgak and Sander (1988), Gelfand and Mitter (1989), Alrefaei and Andradóttir (1999), etc.

• Let $\mathcal{B}(x) \subset \mathcal{X}$ denote a neighborhood[†] of $x \in \mathcal{X}$.

[†]The neighborhood structer can be quite different in discrete optimization compared to continuous optimization!

- Let $\mathcal{B}(x) \subset \mathcal{X}$ denote a neighborhood of $x \in \mathcal{X}$.
- $\mathcal{B}(x)$ is carefully desined such that, for any $x, y \in \mathcal{X}$, y is reachable from x.
 - That is, there exists a finite sequence $x=x_0,x_1,\ldots,x_\ell=y$ such that $x_{i+1} \in \mathcal{B}(x_i), i = 0, 1, ..., \ell - 1$.

SHEN Haihui

- ullet Let $\mathcal{B}(oldsymbol{x})\subset \mathcal{X}$ denote a neighborhood of $oldsymbol{x}\in \mathcal{X}.$
- $\mathcal{B}(x)$ is carefully desined such that, for any $x, y \in \mathcal{X}$, y is reachable from x.
 - That is, there exists a finite sequence $x=x_0,x_1,\ldots,x_\ell=y$ such that $x_{i+1}\in\mathcal{B}(x_i),\ i=0,1,\ldots,\ell-1.$
- Define transition probability $R(\boldsymbol{x}, \boldsymbol{y})$, where $R: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ and $R(\boldsymbol{x}, \boldsymbol{y}) > 0 \Longleftrightarrow y \in \mathcal{B}(\boldsymbol{x})$.

- Let $\mathcal{B}(x) \subset \mathcal{X}$ denote a neighborhood † of $x \in \mathcal{X}$.
- $\mathcal{B}(x)$ is carefully desined such that, for any $x, y \in \mathcal{X}$, y is reachable from x.
 - That is, there exists a finite sequence $x=x_0,x_1,\ldots,x_\ell=y$ such that $x_{i+1}\in\mathcal{B}(x_i),\ i=0,1,\ldots,\ell-1.$
- Define transition probability $R(\boldsymbol{x}, \boldsymbol{y})$, where $R: \mathcal{X} \times \mathcal{X} \to [0, \infty)$ and $R(\boldsymbol{x}, \boldsymbol{y}) > 0 \Longleftrightarrow y \in \mathcal{B}(\boldsymbol{x})$.
- Let $\{t_k\}_{k\geq 1}$ be a positive sequence of numbers, which is konwn as the temperature.

SHEN Haihui

- Simulated annealing algorithm for deterministic optimization:
 - Initialization:
 - At Iteration *k*:
 - Sampling:

- Evaluation: No need in the deterministic optimization.
- Updating:

- Simulated annealing algorithm for deterministic optimization:
 - Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index k=0.
 - At Iteration *k*:
 - Sampling:

- Evaluation: No need in the deterministic optimization.
- Updating:

- Simulated annealing algorithm for deterministic optimization:
 - Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index k=0.
 - At Iteration k:
 - Sampling: Sample a candidate solution $Y_{k+1} \in \mathcal{B}(X_k)$ according to distribution $R(X_k,\cdot)$, i.e.,

$$\mathbb{P}(\boldsymbol{Y}_{k+1} = \boldsymbol{y} | \boldsymbol{X}_k = \boldsymbol{x}) = R(\boldsymbol{x}, \boldsymbol{y}).$$

- Evaluation: No need in the deterministic optimization.
- Updating:

- Simulated annealing algorithm for deterministic optimization:
 - Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index k=0.
 - At Iteration *k*:
 - Sampling: Sample a candidate solution $Y_{k+1} \in \mathcal{B}(X_k)$ according to distribution $R(X_k,\cdot)$, i.e.,

$$\mathbb{P}(\boldsymbol{Y}_{k+1} = \boldsymbol{y} | \boldsymbol{X}_k = \boldsymbol{x}) = R(\boldsymbol{x}, \boldsymbol{y}).$$

- Evaluation: No need in the deterministic optimization.
- Updating: Let

$$m{X}_{k+1} \coloneqq egin{cases} m{Y}_{k+1}, & ext{with probability } \expiggl\{ rac{-[g(m{Y}_{k+1}) - g(m{X}_k)]^+}{t_{k+1}} iggr\}, \ m{X}_k, & ext{otherwise;} \end{cases}$$

set $k \leftarrow k+1$.

 To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$\operatorname{dist}(\boldsymbol{X}_k,\mathcal{S}) \stackrel{a.s.}{\longrightarrow} 0$$
, as $k \to \infty$,

Hajek (1988, Theorem 1) gives a sufficient condition.

• To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$\operatorname{dist}(\boldsymbol{X}_k,\mathcal{S}) \stackrel{a.s.}{\longrightarrow} 0$$
, as $k \to \infty$,

Hajek (1988, Theorem 1) gives a sufficient condition.

 $oldsymbol{0}$ $R(oldsymbol{x},oldsymbol{y})$ satisfies weak reversibility; a sufficient example is that

$$R(oldsymbol{x},oldsymbol{y})\coloneqq egin{cases} rac{1}{|\mathcal{B}(oldsymbol{x})|}, & ext{if } oldsymbol{y}\in\mathcal{B}(oldsymbol{x}), \ 0, & ext{otherwise}, \end{cases}$$

with symmetric neighborhood, i.e., $y \in \mathcal{B}(x) \Longleftrightarrow x \in \mathcal{B}(y)$.

• To ensuer the simulated annealing algorithm for deterministic optimization is globally convergent, i.e.,

$$\operatorname{dist}(\boldsymbol{X}_k,\mathcal{S}) \stackrel{a.s.}{\longrightarrow} 0$$
, as $k \to \infty$,

Hajek (1988, Theorem 1) gives a sufficient condition.

 $oldsymbol{0}$ $R(oldsymbol{x},oldsymbol{y})$ satisfies weak reversibility; a sufficient example is that

$$R(oldsymbol{x},oldsymbol{y})\coloneqq egin{cases} rac{1}{|\mathcal{B}(oldsymbol{x})|}, & ext{if } oldsymbol{y}\in\mathcal{B}(oldsymbol{x}), \ 0, & ext{otherwise}, \end{cases}$$

with symmetric neighborhood, i.e., $y \in \mathcal{B}(x) \Longleftrightarrow x \in \mathcal{B}(y)$.

2 $\{t_k\}_{k\geq 1}$ takes the form

$$t_k = \frac{c}{\ln(k+1)},$$

where c is sufficiently large. †

 $^\dagger c > d^*$, where d^* is the maximum depth (Hajek 1988, p313)) of the local but not global optimal solutions.

- Simulated annealing algorithm for black-box DOvS (Gelfand and Mitter 1989):
 - Initialization: Arbitrarily choose $X_0 \in \mathcal{X}$; set iteration index k=0.
 - At Iteration *k*:
 - Sampling: Sample a candidate solution $Y_{k+1} \in \mathcal{B}(X_k)$ according to distribution $R(X_k,\cdot)$, i.e.,

$$\mathbb{P}(\boldsymbol{Y}_{k+1} = \boldsymbol{y} | \boldsymbol{X}_k = \boldsymbol{x}) = R(\boldsymbol{x}, \boldsymbol{y}).$$

- Evaluation: Let $\widehat{g}(Y_{k+1})\coloneqq \frac{1}{n_{k+1}}\sum_{i=1}^{n_{k+1}}G(Y_{k+1},\xi_i)$, $\widehat{g}(X_k)\coloneqq \frac{1}{n_{k+1}}\sum_{i=1}^{n_{k+1}}G(X_k,\xi_i')$.
- Updating: Let

$$m{X}_{k+1} \coloneqq igg\{m{Y}_{k+1}, \quad ext{with probability } \expigg\{rac{-\left[\widehat{m{g}}(m{Y}_{k+1}) - \widehat{m{g}}(m{X}_k)
ight]^+}{t_{k+1}}igg\},$$

set
$$k \leftarrow k+1$$
.

• Gelfand and Mitter (1989) show that if

$$\widehat{g}(\boldsymbol{Y}_{k+1}) | \boldsymbol{Y}_{k+1} = \boldsymbol{y} \sim \mathcal{N}(g(\boldsymbol{y}), \sigma_{k+1}^2),$$

such that $\sigma_k=o(t_k)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

• Gelfand and Mitter (1989) show that if

$$\widehat{g}(oldsymbol{Y}_{k+1})ig|oldsymbol{Y}_{k+1}=oldsymbol{y}\sim\mathcal{N}(g(oldsymbol{y}),\sigma_{k+1}^2)$$
 ,

such that $\sigma_k=o(t_k)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- A sufficient condition is that:
 - $G(x,\xi) \sim \mathcal{N}(g(x), \sigma^2(x))$ with $\sigma^2(x) \leq \sigma^2 < \infty$ for all $x \in \mathcal{X}$.
 - $\{n_k\}_{k\geq 1}$ satisfies $\lim_{k\to\infty}\frac{1}{t_k\sqrt{n_k}}=0$, i.e., $n_k\coloneqq t_k^{-\alpha}$ with $\alpha>2$.

Gelfand and Mitter (1989) show that if

$$\widehat{g}(\boldsymbol{Y}_{k+1})|\boldsymbol{Y}_{k+1}=\boldsymbol{y}\sim\mathcal{N}(g(\boldsymbol{y}),\sigma_{k+1}^2),$$

such that $\sigma_k = o(t_k)$, then the simulated annealing algorithm used for DOvS has the same global convergence as its counterpart used for deterministic optimization.

- A sufficient condition is that:
 - $G(x,\xi) \sim \mathcal{N}(g(x),\sigma^2(x))$ with $\sigma^2(x) \leq \sigma^2 < \infty$ for all $x \in \mathcal{X}$
 - $\{n_k\}_{k\geq 1}$ satisfies $\lim_{k\to\infty}\frac{1}{t_k\sqrt{n_k}}=0$, i.e., $n_k\coloneqq t_k^{-\alpha}$ with $\alpha > 2$
- Alrefaei and Andradóttir (1999) propose a modified simulated annealing algorithm for DOvS, which is also globally convergent:
 - temperature t_k is constant;
 - the current best solution is chosed in a different wav. 上海文本大学

Black-box DOvS Problem

 Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) is a locally convergent algorithm for black-box algorithm proposed by Hong and Nelson (2006).

- Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) is a locally convergent algorithm for black-box algorithm proposed by Hong and Nelson (2006).
- It can be used when the discrete feasible set is finite (i.e., fully constrained) or infinite (i.e., partially constrained or unconstrained).

- COMPASS for DOvS Hong and Nelson (2006):
 - Initialization:

- At Iteration *k*:
 - Sampling:
 - Evaluation:
 - Updating:

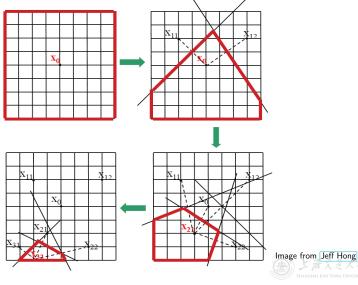
- COMPASS for DOvS Hong and Nelson (2006):
 - Initialization: Arbitrarily choose $x_0 \in \mathcal{X}$; set $x_0^* = x_0$ and $\mathcal{V}_0 = \{x_0\}$; take observations according to a simulation allocation rule (SAR) from x_0 ; let $\mathcal{P}_0 = \mathcal{X}$; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling:
 - Evaluation:
 - Updating:

- COMPASS for DOvS Hong and Nelson (2006):
 - Initialization: Arbitrarily choose $x_0 \in \mathcal{X}$; set $x_0^* = x_0$ and $\mathcal{V}_0 = \{x_0\}$; take observations according to a simulation allocation rule (SAR) from x_0 ; let $\mathcal{P}_0 = \mathcal{X}$; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Sample m solutions uniformly and independently from \mathcal{P}_k , denoted as $\{x_{k1},\ldots,x_{km}\}$; let $\mathcal{V}_{k+1}\coloneqq\mathcal{V}_k\cup\{x_{k1},\ldots,x_{km}\}$ be the estimation set.
 - Evaluation:
 - Updating:

- COMPASS for DOvS Hong and Nelson (2006):
 - Initialization: Arbitrarily choose $x_0 \in \mathcal{X}$; set $x_0^* = x_0$ and $\mathcal{V}_0 = \{x_0\}$; take observations according to a simulation allocation rule (SAR) from x_0 ; let $\mathcal{P}_0 = \mathcal{X}$; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Sample m solutions uniformly and independently from \mathcal{P}_k , denoted as $\{x_{k1},\ldots,x_{km}\}$; let $\mathcal{V}_{k+1}\coloneqq\mathcal{V}_k\cup\{x_{k1},\ldots,x_{km}\}$ be the estimation set.
 - Evaluation: For each $x \in \mathcal{V}_{k+1}$, take additional observations according to the SAR.
 - Updating:

- COMPASS for DOvS Hong and Nelson (2006):
 - Initialization: Arbitrarily choose $x_0 \in \mathcal{X}$; set $x_0^* = x_0$ and $\mathcal{V}_0 = \{x_0\}$; take observations according to a simulation allocation rule (SAR) from x_0 ; let $\mathcal{P}_0 = \mathcal{X}$; set iteration index k = 0.
 - At Iteration *k*:
 - Sampling: Sample m solutions uniformly and independently from \mathcal{P}_k , denoted as $\{x_{k1},\ldots,x_{km}\}$; let $\mathcal{V}_{k+1}\coloneqq\mathcal{V}_k\cup\{x_{k1},\ldots,x_{km}\}$ be the estimation set.
 - Evaluation: For each $x \in \mathcal{V}_{k+1}$, take additional observations according to the SAR.
 - Updating: Update \mathcal{P}_{k+1} ; choose the solution in \mathcal{V}_{k+1} with smallest estimated funtion value as x_{k+1}^* ; set $k \leftarrow k+1$.

• The way to construct \mathcal{P}_k – the most promising area:



- Introduction
 - ▶ Definition
 - ▶ Types
- 2 White-box OvS Problem
 - ► Sample Average Approximation
- 3 Black-box COvS Problem
 - ► Gradient Descent
 - ► Stochastic Approximation
- 4 Black-box DOvS Problem
 - ► Simulated Annealing
 - ▶ COMPASS
- 5 Usage in Softwares

 In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
 - It is robust when used to solve practical OvS problems;
 - but it has no provable convergence for OvS problems.

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
 - It is robust when used to solve practical OvS problems;
 - but it has no provable convergence for OvS problems.
- None of those OvS algirhtms have been integrated into the commercial simulation softwares yet.

- In many commercial simulation softwares, like Arena, AnyLogic, Simio and FlexSim, OptQuest is integrated for simulation optimization.
- OptQuest is based on a combination of methods, including linear/integer programming, heuristics and metaheuristics.
 - It is robust when used to solve practical OvS problems;
 - but it has no provable convergence for OvS problems.
- None of those OvS algirhtms have been integrated into the commercial simulation softwares yet.
- So, for reaseachers in the field of OvS, there is still a long way to go...

